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Computer Software Management
and Information Center

The documentation and program developed for the
advanced structural geometry studies will be
made available to the public through COSMIC.

COSMIC (Computer Software Management and Information
Center) was established early in 1966 at the
University of Georgia to collect and disseminate

to the public computer software developed by govern-
ment agencies. Since that time thousands of computer
programs in all areas of aerospace engineering, mathe-
matics, business, and industry have been distributed
to requesters throughout the United States.

The Technology Utilization Division of NASA,
designed to enlarge the return on the public invest-
ment in aeronautical and space activities, was the
first government agency to participate formally.

_In July 1968 the Atomic Energy Commission and in
November 1968 the Department of Defense jolned in
the COSMIC endeavor. With the addition of these two
major agencies, the original concept of making tax-
paid developments available to the public was expanded
to make COSMIC a transfer point between and within
government agencies as well.

Requests for documentation or information concerning
this program should be directed to:

COSMIC

The University of Georgila
Barrow Hall

Athens, Georgia 30601
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1.1 INTRODUCTION

One of the most economical structural systems in
contemporary use has been based on the spherical form.
Designs for such structures are influenced primarily
by the ultimate purpose of the structure, spacial
environment to which it will be subjected, and the
materials of fabrication.

Two basic systems are used for subdividing the
spherical form for structural application: The bi-polar

system and the multi-polar system. Figures 1.1, 1.2.

Bi-polar System Multi-polar System

Figure 1,1 Figure 1.2



The bi-polar system is related to the familiar
latitude-longitude approach to subdividing a sphere. Two

common examples of this system are the ribbed dome (Figure

1.3) and the Tamella dome (Figure 1.4).
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Ribbed Dome

Figure 1.3
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A typical design problem with the bi-polar system is
with the geometrical relationships of the frame configura-
tion. Computer aids in the design investigation may be
initiated to handle the great number of variables in the
determination of lengths, frequency of members, total
number of joints, number of members intersecting at a
single joint, relationship of members to each other, etc.

This portion of the report will concern jtself with
a mathematical and computer model for determining the
geometrical properties of the multi-polar system for sub-
dividing a spherical form for structural applications. The
model has been 1imited to the three polyhedral forms made
up compietely of regular triangles:. the tetrachedron,

octahedron and icosahedron.



1.2 POLYHEDRON

Hoppe, in 1882, coined the word polytope: a geo-
metrical figure bounded by portions of Tines, planes, or
hyperplanes; in two dimensions it is a polygon; in three a
polyhedron.* However, the Greeks studied polyhedra over
two thousand years ago with the findings of Euclid. Others
such as Klein, Schiafli and Coxeter, introduced much to the
study and concepts of the polytope. In this section of
the report, the structural configurations discussed are
based on several of the polyhedral forms, specifically the
regular (Platonic) polyhedra; the Tetrahedron, Octahedron,
and Icosahedron.

In Euclid's writings, The Elements, explanation and

definition is give to the five regular solids as known

to the ancient world. The convex polyhedra are said to

be regular if each have regular and equal faces, if they

are congruent, and if they are of regular polyhedral angles.
Table 1.1 1ist the properties of the Tetrahedron, Octahedron,
and Icosahedron which are considered as three of the five

regular polyhedral forms.

*Coxeter, N. S. M. 1



Table 1.1
Properties of the Basic Polyhedra
Tetrahedron, Octahedron, Icosahedron
Tetrahedron 33
V=4, F=4, E=6
Dihedral angleB= 2 sin/3/3 = 70° 31' 44"

Angle subtended by an
edge at center of

polyhedron §= cos(- 1/3) = 109°28'16"
Vertices (1//3, /3, 1Af#) (W3, -1NV3, -14/3)
(-1//35 14/3, -1IN3) (-1/3, -1V3, 143)

Center to mid edge 1//3 0.57735

center to center of face 1/3 0.33333

center to vertex 1 1

edge 2/2N/3  1.63299

mid edge to center of face V2/3 0.47140

mid edge to vertex J2 1.41421

mid edge to opposite mid edge 23 1.15470

height (vertex to center of 4/3 1.33333

opposite face)

™N

area of face

/3 1.15470
.51320

5

volume

N
~J|
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Table 1.1 (cont.)

Octahedron 34
V=6, F=8, E=12

Dihedral AngleB= tan 2/2 = 109° 28' 16"
Angle substended by

an edge at center
of polyhedron 6=90°

Vertices (1, 0, 0)

(0, X1, 0)

(0, 0, 1)
edge /2 1.41427
center to vertex 1 1
center to mid edge 1//2 0.70711
center to center of
face 1//3 0.57735
Mid edge to near
vertex 3/2 1.22474
fé‘itiige ro distant J5/2 1.58114
area of face V3 /2 0.86603
Volume 4/3 1.33333
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Table 1.1 (cont.)

v

5
Icosahedron 3

12, F=20, E=30

2/2

Dihedral angle 8= & -(1 sin™') =

Angle subtended by
an edge at center of
polyhedron s= cos (/5 ) = 63°26'05.818"

Vertices t = 1 +/5 = 1.61803 <o, + VT, *
2

—_—
1]

T-

edge
center to vertex
center to mid edge

center to center of
face

area of face

volume

1

138°11'22"

n 1
s'/% 5 /UT
<+ 1 , 0, +
51/ 0T
C;_*J?' .+ 1
51/4 51/&/?
1/’-}
2751 /T 1.05146
1 1
1/4
S/ 5 0.85065
335 0.79465
1/+/3/5 0.47873
(a(5 /%) /7)/3 2.53615
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1.3 STRUCTURAL ORIENTATION

The structural configuration desired is acquired
through a three-way gridding of the faces of the polyhedral
form chosen from one of the three trianqular faced regqular
polyhedra. The grid is then tr..nslated onto the surface
of a circumscribed sphere. A three dimensional rectanqgular
coordinate system was chosen for the basis of the compu-
tations. Due to the symmetries existing in the polyhedral
forms only one face of the polyhedron is used in calculation
of the geometrical properties of the structure. Figure
1.6 shows the orientation of the polyhedral form with
respect to the x, y, z axis with the vertices of the face
chosen for the geometrical computations. The intersection
of the x, y, z axis is located at the origin (0,0,0) of
the polyhedron, this point being the center of the cir-
cumscribed sphere., Table 1.2 list the coordinates of the

vertices of the faces chosen as the PPT.

Octahedron Tetrahedron
Figure 1.6
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Icosahedron

Figure 1.6 (cont.)

Table 1.2

Coordinates of the Principal Polyhedral Triangles

Tetrahedron
= (=143, -1//3, 14/3)
= (W3, -1M/3, -1/J3)
= (-1N3, /3, -1//3)

Octahedron

(-.57735027,~-.57735027, .57735027)

(.57735027,-.57735027,—.57735027)

(-.57735027, .57735027,-.57735027)

= (1, 0, 0)
= (0, 1, 0)
= (0, 0, 1)
Icosahedron
1/ 1/s
- (055", 175 /U7y = (0, .85065081, .52573111)
- (1/5Y%% 0, Je/57 /") - (.52573111, 0, .85065081)

- (/a5 1/st/t/T, 0) = (.85065081, .52573111, 0)

I-12



Throughout the discussion of the methods of sub-
division of the polyhedral forms the Icosahedron will be

used with examples of computer maps of the spherical forms

derived using the three traditional orientations: ‘edge,




e — e

Vertex Orientation
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1.4 DEFINITIONS

AXIAL ANGLE (2) = an angle formed by an element and a
radius from the center of the polyhedron meeting in a
common point and the vertex of the axial angle sharing
a vertex of the polyhedron.

CENTRAL ANGLE (s) = an angle formed by two radii of the
polyhedron passing through the end points of a principal
side.

CHORD FACTOR (cf) = the element lengths calculated based
upon a radius of a non-dimensional unit 1 for the
spherical form. The length of any element for larger
structures may be found by the equation:

cf xr =1

where cf chord factor

r = the radius of the desired
structural forms

1 = the length of the element
sought

DIHEDRAL ANGLE (g) = an angle formed by two planes meeting
in a common line. The planes themselves are the faces
of the dihedral angle, and the common line is the element.
To measure the dihedral angle measure the angle whose
vertex is on the element of the dihedral angle and whose
sides are perpendicular to the element and Tie one in

each face of the dihedral angle.

I-16



FACE ANGLE (a) - an angle formed by two elements meeting
in a common point and lying in a plane that is one of
the faces of the polyhedron.

FACES = the triangles making up the "exploded" structural
form.

FREQUENCY (w) = the number of parts or segments into which
a princip]e side is subdivided.

PRINCIPLE POLYHEDRAL TRIANGLE (PPT) = any one of the equal
equilaterial triangles which forms the face of the
regular Polyhedron.

PRINCIPLE SIDE (PS) = any one of the three sides of the

principle polyhedral triangle.

I-17



1.5 METHODS OF SUBDIVISION

Upon using the spherical form as a structural unit,
it is readily apparent that the basic polyhedral form,
in its pure state, can not satisfy the range of conditions
that must be geometrically and structurally met. Seven
methods will be discussed for reducing the basic poly-
hedral form into a larger number of components from which
the geometrical properties may be made to remain within the
structural fabrication and erection Timits for a desired
configuration.

Due to the symmetrical characteristics of the basic
polyhedral form only one face of the polyhedron is used
for calculating the geometrical properties of the struc-
tural confiquration. The remaining faces may be found by
rotations or reflections of the principal polyhedral tri-
angle and its transformations.

Attention is given here to the seven methods of sub-
dividing the PPT in a broad sense and will be treated in
detail in the following section.

Method 1:

The PPT is subdivided into n frequency, with the parts

chosen as equal divisions along the three principal sides.

Figure 1.8

|

—J‘

NOTE:

™

T =

Figure 1.8
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Each point of subdivision is then connected with a
line segment parallel to their respective sides thereby
giving a three-way grid so that a series of equilateral

triangles are formed. Figure 1.9
1 A

Note: AB is parallel to 12

B
Figure 1.9

Each vertex on the PPT is then translated along a line
passing through the origin (0,0,0) of the polyhedron and
its respective vertex, onto the surface of the circumscribed
sphere. The element connecting the translated vertices form

the chords of a three-way great circular grid. Fiqure 1.10

(0,0,0)

Figure 1.10

I-19



Methods 2 & 3:

The PPT is subdivided into n frequency with the parts
therein as equal arc divisions of the central angles of

the polyhedron. Figure 1.11.

Note: AT # 12

(0,0,0) f

Figqure 1.11

The points of subdivision on each principal side of
the PPT are connected with line segments parallel to their
respective sides. Each line segment intersects at a number
of points which define a gqrid of subdivision. Due to the
method of subdivision, small equilateral triangular "windows"

occur in the grid. Figure 1.12.

1 A
a NOTE: AB is parallel
to 12
b Aa # ab
Windows are equilateral
triangles
2
B
Fiqure 1.12
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The center of these "windows" are found by one of two
methods and are used as the vertices of the three-way grid
for the PPT. They are then translated onto the surface of
the circumscribed sphere along a 1ine passing through the
respective vertex and the origin (0,0,0) of the polyhedron.
The element connecting the translated vertices form the

chords of a three-way great circular grid. Figure 1.13.

Figure 1.13

I-21



Method 4:
The PPT is subdivided into n frequency, with the parts

chosen as equal divisions along the three principal sides.

Figure 1.14.

Figure 1.14

Each point of subdivisions is then connected with line

segments perpendicular to their respective principal side

thus giving a three-way grid comprised of equilateral and

right triangles. Fiqure 1.15.

Note: AB L 12

B

Figure 1.15
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Each vertex on the PPT is then translated onto the
surface of the circumscribed sphere along a line passing
through the respective vertex and the origin (0,0,0) of
the polyhedron. The elements connecting the translated
vertex form the chords of a three-way great circular grid.

Figure 1.16

Figure 1.16

I-23



Method 5
The PPT is subdivided into n frequency with the parts
chosen as equal arc divisions of the central angle of the

polyhedron. Figure 1.17.

|

~

NOTE:

=

1T #

(0,0,0) }

Figure 1.17
The points of subdivision on each principal side of the
PPT are connected with Tine segments similar to Method 4.
However, the line segments are not perpendicular to their
respective sides. Upon completion of the connections a
grid is created. Due to the method of subdivision, small

triangular nwindows" occur in the grid. Figure 1.18.

s

-
/

Figure 1.18

NOTE: AB X 12

Small triangular
windows occur

I-2h



The centers of these "windows" are found and are used
as the vertices cof a three-way grid for the PPT. The ver-
tices are then translated onto the surface of the circum-
scribed sphere along a line passing through the respective
vertex and the origin (0,0,0) of the polyhedron. The
elements joining the translated vertices form the chords

of a three-way great circle grid. Figure 1.19.

Figure 1.19

I-25



Method 6:

The PPT may be described as six right triangles each

being a reflection or rotation of the other. Fiaure 1.20.

Note: ABC is
a right
triangle

Figqure 1.20

In this method of subdivision we shall treat only triangle
ABC. The remaining section of the PPT may be found through
rotations and reflections of this basic unit. The Line AB
is subdivided into parts chosen as equal arc divisions of

the central angle of the polyhedron. Figure 1.21.

\

Note: AT # 12
A
1
128 2
o B
(0,0,0) !

Figure 1.21
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Once the subdivisions are found they are used to find
the points of division on side AC and CB. Perpendiculars
through the points of division on side AB are extended to
side AC, this giving the points of subdivision on side

AC. Figure 1.22.

N

C Note: 24

-
| &

>
—
N
W

Figure 1.22

The points of division on the side CTB were formed by
extending a line through the points of subdivision on

side AC perpindicular to side CBE. Figure 1.23.

Note: 5

B
w
(@}
oy

|

—]
N
w
N

Figure 1.23
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Having acquired the points of subdivision along the
three sides of the triangle, diagonals are drawn from each

point on side AC to alternate points of sides AB and BC.

Figure 1.24.

Fiqure 1.24

To complete the three-way agrid connect alternate
points of subdivision of side AB to alternate points of

division of side BC. Figure 1.25

Figure 1.25

128



Through rotations and reflections of the basic unit
and its subdivisions, the entire three-way gridding of the

PPT may be found. Figure 1.26

\

£
-

Figure 1.26

The vertices of the three-way grid are then trans-
lTated to the surface of the circumscribed sphere along a
Tine passing through the respective vertex and the origin
(0,0,0) of the polyhedron. The element joining the trans-
lated vertices form the chords of a three-way great circle

grid. Fiqure 1.27.
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Method 7
The PPT is described as six right triangles each

being a reflection or rotation of the other. Figure 1.28.

NOTE: ABC is a
right
34 triangle
1 6
A
B

Figure 1.28
In this method of subdivision only one of the right
triangles will be treated as the basic unit for subdivision
into a three-way grid. The line AC is subdivided into parts
chosen as equal arc division of an angle made up of the triangle
AC and the origin of the polyhedron with the origin (0,0,0)

bieng the center of the triangle of subdivision. Figure 1.29

NOTE:

=
a3

7
c.L

O

(8&0) } =

Fiqure 1.29
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Once the subdivisions are found on line AC they are
used to find the points of division on side AB and CB. The
lines through the points of sibudvision on side AC are taken
perpendicular to side AB, this giving the points of division

on side AB. Figure 1.30.

Note:

|

- N
< o)
w =
w p=
N

Figure 1.30

The points of division on CB are found by extending a

line through the points of subdivision on AC perpendicular

to CB. Figure 1.31.

Note:

|
1
|
{
NN Y
- Ol
~ &
w
ol O
E-Y R

Figure 1.31
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Having acquired the points of subdivision along the
three sides of the triangle, diagonals are drawn from each

point on AC to alternate points on AB and BC. Fiqure 1.32.

Figure 1.32

To complete the three-way grid connect alternate points

on AB to alternate points on BC. Figure 1.33.

Figure 1.33
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Through rotations and reflections of the basic unit
found and it's subdivison, the entire three-way grid of

the PPT may be found. Figure 1.34.

VAVA

VAVAVAY <

Figure 1.34

The vertices of the three-way grid are then translated
to the surface of the circumscribed sphere along a line
passing through the respective vertex and the origin (0,0,0)
of the polyhedron. The elements joining the translated ver-
tices form the chords of a three-way great circle grid.

Figure 1.35.
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1.6 METHOD 1

The mathematical and computer model was developed
for subdividing a tetrahedron, octahedron, or an icosahedron
circumscribed by a unit sphere. The icosahedron was chosen
as an example to illustrate the geometry of the model.

The icosahedron is oriented in a three dimensional
rectangular coordinate system so that the vertices of one
PPT are:

(Xla Y]_’ Z})

it

0, /o . _1 )
4 4
Vs V<
(0, .850651, .525731)
(Rps Vo0 2p) = (1 O {r— )

Vs/e /5

(.525731, 0, .850651)

14

R

( j(:- © g 1 0)
Vs JsJ/x

(.850651, .525731, 0)

(XB’ Y3’ 23)

s

l.ii@j
2

where =t

with the intersection of the axis X, Y, Z located at the

origin (0,0,0) of the jcosahedron. Figure 1.36.

136



Figure 1.36

This PPT is divided into smaller equilateral triangles

where the vertices of the triangles are of the form

Xo = X, X3 - X, Yo - Y, Y3 - Y,
<X1+I_____+J__~__Y1+I________+J__._._
N N N N
Z; - Ih I3 - 7, 1.1
Zy+ 1 ———— g —
N N

where N is the frequency of the structure and I and J are
integers such that 0<d<I<N. The values of I and J are unique

for each vertex and are used to identify each vertex as shown

in Figure 1,37.
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(N, 1)

(N,0)

(N,N-1) 3
(N,N) \

(N=-1,N—1)

(1,1 (1,0)

(0,0)

Figqure 1.37
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To find the projection of each vertex of the PPT
onto the unit sphere along a line segment through the vertex
of the PPT and the origin each coordinate of each vertex,

PPT, is divided by the distance between the vertex PPT and
the origin. Figure 1.38.

(X41,Y1,27)

(0,0,0) (X3.¥3.23)

Figure 1.38
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Using the coordinates, this program finds the lengths
of the elements of the structure (2), the angle between pairs
of elements (face angle «), the angle between the elements
and a radius from the origin to an endpoint of the element
(axial angle @), and the angle between adjacent faces of the

structure (dihedral angle g). Figure 1.39

(XuYy.Zy)

Figure 1.39

To find the angle between elements the face § a, we use
the coordinates of their endpoints. The vertex of the angle
is a common endpoint to each e1ément and is transiated to the
origin. The other two endpoints P1 and P, are translated in
the same manner. Letting (X1, Yi, Z,) and (X, Y2, Z2) be
the points resulting from the translations of the endpoints

P, and P, ,

I-40



Cos o = X1X2 + Y1Y2 + 2122
did> 1.2
2 2
where d, = X1+ Y1 + Z1
2 2 2
and d2 = \/Xz + Y2 + Zz

o is the desired angle.
To find axial angles the above method is used except
that the vertex is established at one end of an element and the
origin is used with the other endpoint to define the angle.
The desired angle is g.
The angle between two adjacent faces, the dihedral 4 8,
is found using

Cosg = A,A, + BB, + C,C,

2 2 2 2 2
Ap + By +C; A, +B, +C

where
B is the desired angle.
A1X + B;Y + C,;Z + D, = 0 defines the plane containing
one face and A,X + B,Y + C,Z + D, = 0 defines the plane con-
taining the other face.
The negative sign is used because the obtuse angle is desired.
The A, B, and C fcr each plane are computed as
Y1 Z; 1
A=|Y, Zz2 1
Y3 Z3 1

I-41



X1 Z1 1

1.4
X, Y, 1

C={x, VY, 1
Xz Ys 1

where (X1, Y1, Z1)s (Xgs Yoo Z,), and (X5, Yg, Zg) lie in
the plane. In particular the three vertices of each face
are used. For the special case where the two faces used lie
above separate faces of the polyhedron, the assumption is
made that the plane containing the element common to each
face and the origin bisects the angle. This ang1e is found
in the same manner and doubled. This method is used because
the structural face above the polyhedral face is not generated
properly.

The length of the elements, %, are found by using the
general equation

2 2 2
g = AP, - P + (P -P + (P - P
/xl X, (P Y, ) ( 2 2, )
1.5

2 is the desired length.

To reduce total output, this program takes into account
certain symmetries and outputs only a part of the total angles
and lengths. The rest of the values are the same as at least
one outputed value and can easily be found using the following

symmetries. Figure 1.40.

I-h2



(N,N) (N,N-1) . (N, 1) (N,0)
J

N,

(N-1,N-1)

N /

NN

. (1,0)

(0,0)

Figure 1.40
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FACE ANGLES

For every face angle opening directly towards (or
away from) the point (0,0), there are equal angles opening
towards (or away from) the point (N,0) and (N,N). For
example, the angle (1,1), (0,0), (1,0) with vertex at (0,0)
is equal to the angle (N-1,0), (N,0), (N,1) and the angle
(N,N-1), (N,N}, (N-T, N-1). Thus, only the face angles
facing directly towards or away from (0,0) are computed.
1f the vertex is to lie at (1,J), the angle will be either
(I +1, 3+ 1), (1,9), (I +1, J) or (1-1, J-1), (I,39),
(1-1,J). Also, only the face angles falling on the right
of or on a line passing through (X1, Y1, Z1,) and the mid-
point of the opposite side are computed.

The elements of the structure can be put into one-to-
one correspondence with the lengths and dihedral angles.
The dihedral angle associated with an element is the angle
between the two faces containing the element. For each
element, there are two axial angles, one at each end, but
since the element is a cord of the circle, the two angles
are equal and may be considered one. In this case, we
have a one-to-one correspondence between elements and axial
angles. This program will only compute values around
elements parallel to the side opposite (X;, Yy» Zl) and on
the right side of a Tine through (Xl, Y Z,) and the
midpoint of the opposite side. All other lengths and angles
are symmetric to one of the lengths and angles computed in

this manner.
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THE COMPUTER PROGRAM DESCRIBED ON
PAGES I-45 to I-75

IS AVAILABLE FROM COSMIC



1.7 METHODS 2 & 3

This program works with a tetrahedron, octahedron,
or icosahedron circumscribed by a unit sphere. The icosa-
hedron was chpsen as an example to illustrate the geometry
of the program. The jicosahedron is oriented in a three
dimensional rectanqular coordinate system so that the

vertices of one PPT are

(X]_, yl, zl) = (O

9 \u/r_’ £ ] )
o KA

(0, .850651, .525731)

)13

(kps ¥,2 2,0 = (1 _ 0, Vt )

R

(.525731, 0, .850651)

( VA . 1,0
VAV

(850651, .525731, 0)

(X3 Ygo Zy4)

It

1 +V5

—_— Y ——

2

where =t

with the intersections of the axis X, Y, Z, located at

the origin (0,0,0) of the icosahedron, Figure 1.43.
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Figure 1.43

This PPT is divided into smaller triangluar units which
are translated onto the surface of a sphere constituting
the desirable space form.
Using the following formula the planes consisting of
the edges of the PPT and the origin (X;, Yy, Z;) (Xp, Y,, Z,)
(X3, Y3, Zg) are rotated from 3-space into 2-space, Figure

1.44.
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= N

Figure 1.44

x''= ayx + wyy + v, Z 1.6
= oA, x + + z

y 2 Uz.y \)2

N
i

! AgX +  pgy + v,Z
Where x, n, v are direction cosines of the X'-axis, and Y'-axis,
and Z'-axis respectively with respect to the old axis and

are found by

/Q/ 2 2 2

/Q/ 2 2 2
111 = }’1 xl + yl + Z].
= /p/ 2, 2 + >
\)1 = Zl X]. yl Zl
Aos Ag3 H,ysU3s andvy,vs are found similarly.
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The edge of the PPT is subdivided into units by the
following method, Figures 1.45 and 1.46.

FIND: the angle ¢ contained within the rotated triangle
consisting of P;P,, and the origin with the vertex located
at the origin.

¢ = Arctan (ixi_) r 1.7
P2

where r = 1 and is consideredconstant

Figure 1.45

THEN: subdivide the angle ¢ into N angles o

8 = ) . T 1.8
N

Where T = Increment 1 to N

Y
Py

Figure 1.46
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Rotate the points of intersection along the PPT edge from

2-spaces back to 3-spaces.

X o= ogx' oy o+ oy 2 1.1

y

i}

>
N

x

]
Tyt v,z

= - T
z )\3)( u3y \)32

wherey, ,, v, are direction cosines of the X'-axis, Y'-axis,
A Mo v

and Z'-axis with respect to the old axis and are found:

// 2 + z + 2
Ay T OXy Xy Y1 Zy
2 2 2
wyp T Y, /ﬂ/&1 ty, tzg
2 2 2
vi= 2z, X"ty o+ oz

Aos Xg3 Hps Hgi and vV,s vy are found similarly.

Retain the co-ordinates along the edges S;, S, and S; as

shown in Figure 1.47.
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Figure 1.47

After finding the unit measurements along the edges of
the PPT, they are connected through a grid determining a
smaller grid network. Since the units along the PPT edge
are not equal, the gridding will create "windows". The
centers of these "windows" must be found to establish the

final 3-way grid network. Figqure 1.48.

p ©
(S)

Pa

Po Ps

Figure 1.48
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The gridding and windows are found by the following

method:

From the coordinates along the edges of S;» S

2

and S3, calculate coordinates of the window by finding the

intersection of P, P, with Py P, and Py P, with

Ps Pg and P, P, with P5 Py by using the two point form of

the equation of a line in three-space for the three lines

and solve simultaneously for the points of intersection.

X =X, Y-y1 z-z
X - Xj Yy = ¥, z - z,4
Xu= Xg yqf v, z, -z,
X =~ Xg Y =Yg z - z4
Xg=Xg Ye~Ys Zg= Zg

1.12

To find the intersection of PP, with P,P, the equation

takes the following form:

(1) P,P,
2 7,
(3) P,P,
(4) P,P,

is:

is:

is:

is:

X(¥Yo-y1) + y(x1-x5 )

ylz,-z,) + z(y,-y,

x(yy-ys) + y(x3-xy

y(z,-z5) + z(y;-y,

I-8%

)

It

y1(xy3-x5)

Zl(‘yl-‘yz)

= y1(xg-x,)

= Z3(Y3"Y4)

+

+

x1{(¥o-y;)

vy (2z,-2,

X1(Y4’Y3)

yalz,-z4)



For P,P, let: (y,-y,) = 2

(Xl'xz) = by

yl(xl-xz) + Xl(yz'yl) =4
For P3P, let: (y,-¥3) = 2,

(xa-xu) = b,

yl(x3-xh) * X1(yu-y3) =<

using the formula 1.10 solve for x andy coordinates of
the intersections of PP, with P,P,-
Find the z coordinate:
For P;P, let: (z,-2,) = a,
(y,-¥,) = by

z,(y,1-¥,) y(z,-23) = ¢

For P4P, let: (zy,-23) = 3y
(Y3'y“) = b2
2,(ys-yy) * ¥3(z4-23) = €
The other two vertices of the window are found in a similar
manner. Once the coordinates for the vertices of the window
are determined, its center is found by one of the following
two methods:
METHOD I:
On the PPT Plane the windows appear as equilateral
triangles with vertices Pl(X1Y121)’ Pz(x y.z. ),

27272
Pé(x3y3z3) as shown in Figure 1.49.
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Py

Figure 1.49

The center C(cx,cy,cz) is found with the following

formula:
CX = Xt Xt X, 1.13
3
CY = y+ y,*+ y,
3
CZ = z.t z,+ z,
3

METHOD I1I:
The coordinates of the window found on the surface
of the PPT are first "exploded" to the surface of
the sphere. The center of the exploded window is
then found by the intersection of angle bisectors.

To find the projection of each vertex of the window
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onto the unit sphere, translate each vertex along
a line through the vertex of the PPT and the origing
each coordinate of each vertex, PPT, is divided by
the distance between the vertex PPT and the origin,

Figure 1.50.
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Xy

+‘y1

Z)

where d = distance 1.14
from origin to P1

where r = radius of
the sphere to be ex-
ploded upon and is

considered constant

Figure 1.51

I-87



v
-
1l
-u
—
i
)
w

Tx X X 1.16
P, =P, -P
LTy ly 3y
PlTZ = Plz - P3Z
Page = Pox = Py
PZTZ = Pzz - sz

PSTX1’ P3T)’1’ p3T21

Rotate plane Py, Py, P3 SO that P;P3 will fall on the X-axis
and P3 is at the origin using equation 1.6
The center is found with the intersection of two angle

bisectors of the triangular window Py;P,P3, Figure 1.52.

Y

Figure 1.52
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The angles y and & are found:

Arctan y, 1.17
— =y
X,
Arctan D)
=6
Xq =X,

rotate P, about P, toward Pis /2 v degrees
X, = Xp cos 1/, y +y, sin 1/, y 1.18

Yy = yycos 1/, vy - x, sin 1/, y

Tocate the origin at P,, then rotate P, about P, toward
P, 1/, & degrees.

xg = (xp-xy) cosl/y 6- y, sin 1/, § + x; 1.19

Ys = ¥2 cos /5 8§ + (x,- x;) sin 1/, s
thus defining P;Ps and P3P, .

With P3 at the origin formula 1.9 mav be used to solve

for the intersection of line P3P, ﬁ?35 finding center C.
Rotate C back to three space using formula 1.11 . Then

translate center C back to three space ("C" is located in

the previously "exploded" window), fiqure 1.53.

C'x = Cx + Psx 1.20
C'y = Cy + Pgy
C'z = Cz + P3z
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T

Figure 1.53

For Method I or Method II, the centers found are
"exploded" to the surface of the sphere using formula
1.14 and formula 1.15

Using the coordinates, this program finds the lengths
of the elements of the structure (), the angle between
pairs of elements (face angle o), the angle between the
elements and a radius from the origin to an endpoint of
the element (axial angle 2), and the angle between adjacent

faces of the structure (dihedral angle g), Figure 1.54.
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Fiqure 1.54

To find the angle between elements the face 3 o, we
use the coordinates of their endpoints. The vertex of the
angle is a common endpoint to each element and is translated
to the origin. The other two endpoints P; and P, are trans-
lTated in the same manner. Letting (X15 Y15, z1) and (X, yo,
z,) be the points resultina from the translations of the

endpoints P1 and P,,
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CoS o = XX, t Yy, *t 7,2,
d,d,
v/—? 2 2
where d, =vxy ty, t2;

- v/ﬁ2 2 2
and d, =Xy * Vo * Zp

o is the desired angle.

.21

To find axial angles the above method is used except

that the vertex is established at one end of an element

and the origin is used with the other endpoint to define

the angle. The desired angle is Q.

The anale between two adjacent faces, the dihedral

3 8, is found using

cos B = I-AlA2 + B 82 + ClC2

1

V/”4§ 2 2 2 2 2

where

g is the desired angle.

.22

A X +B,Y + C,ZH+ D; = 0 defines the plane containing

one face and AéX + BzY + CZZ + 02 =

plane containing the other face. The negative sign is

used because the obtuse angle is desired.

The A,B, and C for each plane are computed as

Y, 7,
A=Y A
2 2

Y3 ZB

X, 7,

B = X, z,
X3 ZS

I-92
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X1 Y, 1
X, Y, 1
X3 Yy 1

where (x1, Y1, Z1)s (Xas Yo, Zp), and (X3, Y3, Z3) lie in
the plane. In particular the three vertices of each face
are used.

The length of the elements2 are found by using the

general equation:

1.24
z=/(P Sp ¥ e (p - Y w(p =P
X X o

2 is the desired length.

To reduce total output, this program takes into
account certain symmetries and outputs only a part of the
total angles and lengths. The rest of the values are the
same as at least one outputed value and can easily be

found using the following symmetries, Figure 1.55.
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N,N

N, N-1

N-1,N-1

)

N,0

1,1

0,0

Figure 1.55
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FACE ANGLES

For every face angle opening directly towards (or
away from) the point (0,0), there are equal angles opening
towards (or away from) the point (N,0) and (N,N). For
example, the angle (1,1), (0,0), (1,0) with vertex at (0,0)
is equal to the angle (N-1,0), (N,0), (N,1) and the angle
(N,N-1), (N,N), (N-1, N-1). Thus, only the face angles
facing directly towards or away from (0,0) are computed.

If the vertex is to 1ie at (I,J), the angle will be either
(I + 1,3+ 1), (I,d), (I +1,3) or (I-1, J-1), (1,9),
(1-1,J). Also, only the face angles falling on the right
of or on a line passing through (X,, Y;, Z,,) and the mid-
point of the opposite side are computed.

The elements of the structure can be put into one-
to-one correspondence with the lenaths and dihedral angles.
The dihedral angle associated with an element is the angle
between the two faces containing the element. For each
element, there are two axial angles, one at each end, but
since the element is a cord of the circle, the two angles
are equal and may be considered one./ In this case, we have
a one-to-one correspondence between elements and axial
angles. This program will only compute values around elements
parallel to the side opposite (X;, Y;, Z;) and on the right
side of a line through (X, Y1’Z1) and the midpoint of the
opposite side. Al11 other Tlengths and angles are symmetric

to one of the lengths and angles computed in this manner.

1-95



The computer program here contained was written
for the IBM 7040/7044 computer, utilizing FORTRAN IV
language. The program may be used for a Tetrahedron,
Octahedron, or Icosahedron, depending upon the coordinates
chosen as input data. The output is given in units based
upon a radius of 1 for the spherical form and therefore,
may be used as a basis for determining large structures.

The example of input data is given in Table 1.6. The
example of output data is given for a six frequency Icosa-
hedral sphere, and may be read as in Table 1.7. The output
takes advantage of symmetries within the spherical Icosa-

hedron as discussed in the text material. Figure 1.56
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THE COMPUTER PROGRAM DESCRIBED ON
PAGES I-97 to I-144

IS AVAIIABLE FROM COSMIC






1.8 METHODS 4 & 5

This mathematical and computer model was written for
subdivision of a tetrahedron, octahedron, or icosahedron
circumscribed by a unit sphere. The Icosahedron was chosen
as an example to illustrate the geometry of the model. The
polyhedron is oriented in a three dimensional rectangular
coordinate system so that the vertices of one PPT are:

(x1,y,,2,) = o0, J:, 1
Vs s/
= (0, .850651, .525731)
(x35¥,52,) = 1 ,0, /<
Vs /o e
= (.525731, 0, .850651)

\/T s 1 s
Vs Al
(.850651, .525731, 0)

1 +/5
—

0

(X3:¥4525)

R

1]

where: T

with the intersection of the axis X, ¥, z located at the

origin (0,0,0) of the polyhedron. Ficure 1.58.
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X21Y2 ’ Zz

Figure 1.58
Due to the methods in which the three-way grids are generated
only even frequency subdivisions may be used.
Subdivision and Gridding for Method 4
The PPT is subdivided into equal parts so that the

vertices take the form:

XZ—X].’ y2_yls 22-7-1 1.26
X1+I N ,y1+I———--N——-——,zl+I———-

N
where N is the frequency of the structure and I is an interger
such that 0 < I < N. The values of I are unique for each vertex
and are used to identify each vertex for each side as shown in

Figure 1.59.
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X3:Y3,2, Xpi¥2 .2,

X]lY| ’ Z]

Figure 1.59

Having found the unit division along the principal side of
PPT, the points of subdivision are connected so that a three-
way grid is generated with the Tlines of the grid perpendicular

to their respective sides. Figure 1.60

Figure 1.60
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Solve the equations for the x & Y coordinates of the inter-

section of PP, with P,P,

D =

find the z

For

For

a, b,

a b
2 2

¢ by

c, b2
D

a3 4

a, €,
D

coordinates

PP, let:

P3PL+ let:

(z,-z,) = a;

(y,- v,) = b,

zy(y1-y2) *+ y1(zp - z3) = ¢,
(zy - z3) = ay

by

(y3 - yy)

23(yy - yu) *y (2, - z) = ¢,

The intersection of PP with PsPL,& PyP, are coincident and

need not be found.

A11 other points of intersection of the three-way grid are

found in 1ike manner and arestored for final translation to

the surface of the circumscribed sphere,
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Subdivision and Gridding for Method 5
With the following equations the planes consisting of
the edge of the PPT and the origin (0,0,0) are rotated from

3-space, Figure 1.61.

X
Figure 1.61
X2 = ax touy vz 1.30
y = )\2X + uzy + \)22

Where x», u, v are direction cosines of the X--axis, Y- -axis, and

7--axis respectively with respect to the old axis and are found by:

V/i 2 2 2

SULEVA SYANE S U & U
J/ﬁ 2 2 2

wy Syl X vy, + z,

2 2 2
vy = 21/ X1 +y, t 2z,

A3’ Hpo M3d and y,, vy are found similarly.
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Due to the method in which the three-way grid is generated
only even frequency subdivisions may be used. The principal
side of the PPT is subdivided into equal arc units by the
following method: Figure 1.62 and 1.63.

FIND: the angle ¢ contained within the rotated triangle
consisting of 5:52, and the oricin with the vertex located
at the origin.

¢ = Arctan ( Py2 Y -+ r

FXZ

Where r = 1 and is considered constant

Figure 1.62
THEN: subdivide the angle $ into N angles
9 = $ T

N
where T = Increment 1 to N
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Figure 1.63

The points of intersection of 653 and P1P2 are found:

PP, is y - ¥, =y, - ¥

X - X, Xy = X1 1.33

OP3 isy -0 =Y, - 0

x - 0 Xy = 0

The equation takes the following form:

PP, is x(y, - y1) * ¥(x; - %) = ¥ (% - x2) + x (ya - y1)

lTet (y2 - y1) = a3

yo(x1 - x3) * x1(y2 - y1) = c1

0P is Xyz - yxy =0

let Y, =3,
Xy = b2
0 = c,
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Solve the equations for the point of intersection:

a
1
D=
a
2
Y= a
1
a,

Rotate the points of intersection along the PPT edge from

2-spaces back to 3-spaces.

X

Y

z

A

A

A

1X + MYy + vlz

2X + oY + v,2Z

3x + Y + v3Z

where X, n, v, are direction cosines of the X“-axis, Y~-axis,

and Z”-axis with

A1

M

Retain the co-ordinates along the edges S1’ 52 and 53 as shown

in Figure 1.64.

respect to the old axis and are found:

A

v/ 2 2
Xp IV xy ty, otz

2

J/ 2 2 s
y, /' J/xy ¥, z,

2

/2+ 2+
z1 / X, Y, z,

g3 Mos M3 and vy, v
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Xz ,Y2 , Zz
N

N
XN, 4

Figure 1.64

After finding the unit divisions along the principal sides of
the PPT, the points of subdivison are connected thereby creating
a grid network. Since the units along the principal sides are
not of equal length, the gridding will create "windows". The
centers of these "windows" must be found to establish the

three-way grid on the PPT. Figure 1.65.
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Figure 1.65

The gridding and windows are found by the following
method: From the coordinates along the edges of S;, S, and Sj;,
calculate coordinates of the window by finding the intersection
of P,P, with P;P, and P;P, with PP, and PP, with P_P, by using
the two point form of the equation of a line in three-space for

the three lines and solve simultaneously for the points of

intersection,
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Find the z coordinate:

For 3:52 let: (22—21) = a,

(y,-y,) =b,

z (y-y,) +y (z,-2.) =c,
For W;ﬁq Tet: (24—23) =a,

(y,-y,) = b,

23(y3—yq) +y,(z,-z,) = ¢

The other two vertices of the window are found in a similar

2

manner. Once the coordinates for the vertices of the window

are determined, its center is found by the following method:
cw = (w1 tow, w3)/3

center of the windows

=
>
[¢]
-
(]
0
=
]

the X, ¥, or z coordinate of the
vertices of the window.

=
1]

Translation of the Grid for Method 4 & 5
The vertices of the three-way grid are then translated

to the surface of the sphere along a Tine passing through the

respective vertex and the origin (0,0,0) of the polyhedron by:

X = rx
1 1
d
- = Y‘
A Y,
d
z " = vyz
1 1
d
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Where:

and

and

where:

¢/ 2 2 2
=/x, +ty, *+z,

distance from origin to P1

the radius of the unit sphere

=1

Using the translated coordinates, this program finds the

lengths of the elements of the structure (&), the angle between

pairs of elements (face angle o), the angle between the elements

and a radius from the origin to an endpoint of the element

(axial angle 2), and the angle between adjacent faces of the

structure (dihedral angle 8), Figure 1.66
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Figure 1.66

To find the angle between elements the face < a, we use the
coordinates of their endpoints, The vertex of the angle is a
common endpoint to each element and is translated to the origin.
The other two endpoints P, and P, are translated in the same
manner. Letting (x;, y;, z;) and (x;, y,, z,) be the points

resulting from the translations of the endpoints P1 and P2,
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2 2 2
where dl_\/g:* +y, *tz
2 2 2
= + +
and d, VA;; Y, z,

o is the desired angle.

To find axial angles the above method is used except that
the vertex is established at one end of an element and the
origin is used with the other endpoint to define the angle.
The desired angle is Q.

The angle between two adjacent faces, the dihedral ¥, B,
is found using

cos B = -

ALA, + BB, + clcz\

. 1.39
2 2 2V/ﬁ72 2 2
/£1 + Bl + C1 A2 + 82 + C2

where
g is the desired angle.

A X+ B,Y + CyZ + D, =0 defines the plane containing one
face and A X + B,Y + C,Z + D, = 0 defines the plane containing
the other face. The negative sign is used because the obtuse
angle is desired.

The A, B, and C for each plane are computed as

y Z 1
1 1

A=y, z, 1

Y 7 1
3 3

1.40

\x Z 1
1 1

B = | X i 1
2 2

X 7 1

3 3
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3 3

where (Xl, Y., Zl), (X,, Y5, Z,), and (X3, Y., Z.) lie in

3 3
the plane. In particular the three vertices of each face
are used.

The length of the elements are found by using the

general equation:

2 is the desired length.

To reduce total output, this program takes into account
certain symmetries and outputs only a part of the total angles
and lengths. The rest of the values are the same as at
Teast one outputed value and can easily be found using the

following symmetries, Fiqure 1.67.
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THE COMPUTER PROGRAM DESCRIBED ON
PAGES I-163 to I-184

IS AVAILABLE FROM COSMIC






1.9 Methods 6 & 7

This mathematical and computer model was written for
subdivision of a tetrahedron, octahedron, or icosahedron
circumscribed by a unit sphere. The icosahedron was chosen
as an example to illustrate the geometry of the model.

The polyhedron is oriented in a three dimensional rec-

tangular coordinate system so that the vertices of one

PPT are:
(X35 ¥y5 2;) =(0, YT , 1
/5 VE/A
= (0, .850651, .525731)
(x2, y2, z2) = T, 1 » 0
vE s
= (.850651, .525731, 0)
(X3, ¥3, z3) = 1 » 0, Vo
Vava Va3
= (.525731, 0,.850651)
where: t = 1 +.J/5
2
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The intersections of the axis X, Y, 7 is located at

the origin (0,0,0) of the polyhedron. Figure 1.68.

(X51Y3,Z3)

Figure 1.68
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Note: ABC is a

right triangle

Figure 1.69

Subdivision for Method 6

The Line AB is subdivied into parts chosen as equal
are divisions of the central angle of the polyhedron by the

following equation. Figure 1.70.

Z[Arcsin (/(xz—xl)2 +(y,-y,) 2/2)]

¢ =
22 =Xy
X | —1
Sin Ie) 1.
f(xz—xl)2 +(yp-yy)2 N
Yo=Y,
y = _
Sin Io )
J(x,-x)2 +(y,-y,)2 N

1l

where: © 1/2 §

"

8 the central angle of the polyhedron

0 I<N

1A

(xy, y;) and (x,, y,) represent any two

points on the PPT edge
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/
V/
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Figure 1.70

Subdivision for Method 7

The Line AC is subdivided into parts chose as equal
arc divisions of an angle made up of the triangle AC and
the origin of the polyhedron with the origin (0, 0, 0) being
the center of the triangle of subdivision. The following

equations are used for this subdivision. Figure 1.71

A= Arcsin [ 2/3 /(xl—xz)2 +(y1—y2)2]

2 (Xz'x1)

X = Sin IA
3/ (x5-x1)2 +(y,-y,)? ( N )
2 (yZ-‘yl)

y = Sin IA
3ﬂx2—xl)2 +(.V2'.yl)2 ( )

=
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where: A= the angle
A0 and 0C
0 < I<N

(x1,y;) and (x,,¥,) repre-
sent any two points on the

PPT face bisector.

between
(X,rYy) (X21Y3)

A \ N B

(0,0,0)
0

Figure 1.71

Gridding & Projection for Methods 6 & 7

The points of subdivision for methods 6 and 7 are

stored in a matrix and are used in the gridding process for

each respective method. Figure 1.72

Matrix PT(A,B,

sphere: A =

1-
2-
3-
4-

B =

1-
4~
7 -

C =

C)

the type of point

on the edge of triangle

on bisector of angle

on internal points of triangle
external points

Tine value and x, y, z values

3 represents x, y, z values of line 1
6 represents x, y, z values of line 2
9 represents x, y, z values of line 3

the number of points on the Tine.
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Once the subdivisions are'found, they are used to find
points of divisions on the other two sides of the right

triangle by the following equations. Figures 1.73 & 1.74.

x = (Yy +xy IMy1) - (1, =xg Mg, 1)
M3u - M21
Yy = x(Myy) + yy-x3(Myy)
where:M21 =-X,-X; (neg. reciprocal of slope)

Yo-¥1

May = ¥4-v, (sTope)
X3=X,

(x4rY4)
(x,)
(xs'Ys) (x,,Y,) (x2,Y2)

Figure 1.73
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and: x = (yy M xg) - (v, *M,x,)
(M, - M)
y = xMy +yg +x5M,
_ (1
where: M, = M, (neg. reciprocal of slope)
My = ¥y, ~¥,
X, =X (slope)
1 (%2:Y2)
(x3'Y3) (er)
1L (x]:Y‘)
C
|
Vo
N
A B
Figure 1.74
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Reflection of points in two-space are found by:

Figure 1.75.

R RN A AN

(M2 _Ml)
1
Yy = X, M+ /o +x M
h M, = - 1y
where 1= M,
M2 = (yz -‘yl)
(x, -x;)

and the reflected points are:
X = X, + 2 (x, - xq)

y=y, +2(y, -vy)

¢ (x5,Y5)
(XII.YI_)___—:: o —_(.X!Y)

(X41Y4)

(X5 Y3)

Figure 1.75

Rotations of points in two-space are found by:
Figure 1.76.
x = (x,-x;) Cos & - (y,-y;) Sin e +X,

y = (xz-xl) Sin ¢ + (yz—yl) Cos o +y,
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in matrix form

(x,y) Cos @ - Sin @

Sin @ Cos &

e

(xyvy)

x,v)

(XQ'Y'Z)

Figure 1.76

The points for the internal gridding are found by

the equations: Figure 1.77.

X = (BZC1 - Blcz)
(AzBl - Ale)
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y = (AL, - ACy)
(A;B, - BjA,)

where: Yo = ¥

Xl-X2

A=
B,=
Co= xy (¥ - y,) +y, (x, - X, )
A,=
B, =

C2= X3 (Y3 - yl+) + .Y3 (Xq - X3)

(M)

;(x,& C,
(<o)

4
 (x2)

(%a.2)

<

Figure 1.77

Through rotations and reflections (equations 1,50, 1.51)
of the basic unit, the entire PPT three-way grid is found.

Figure 1.78
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Figure 1.78

The external points of the PPT are found by equation
1.52 and are rotated into their respective plane by equation
1.44 where: the angles of rotation are found by equation
1.43. The external points are rotated by equation 1.51
to their respective positions.

A1l points of the three-way grid are then rotated into

three-space using equation 1.45

where: TZ = 20 - Tz
Ty = 20 - Ty
Tx = 20 - TX

are the angles of rotation.

The origin is then retranslated to its original

position by:
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where:

A11 points of the three-way grid are then projected

x
1}

<
u

Z =

(T, .

X +
y+
z +

Ty,

Tx
Ty
Tz

TZ)

the coordinates to which the origin was

originally translated to.

to the surface of the sphere by:

where:

<
It

X

Dis
y

Dis
z

Dis

Figure 1.79

Dis =/ (x)2 + (y)2 + (z)2

Figure 1.79
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For the PPT, the number of:

edges = 3v(3v - 2)

8

half edges = 3v

2
faces = 3v(v - 2)

4 1
half faces = 3v

vertices = 3v(v + 2)

8

where:v frequency and must be even

For the total spherical form, the number of:

Ev
Edges = 3
ge 4
£y 2
Faces = LY
ac =

2
Vertices = Eﬁ_ + 2

where: E = no. of edges in polyhedral unit.

Using the coordinates, the lengths of the elements of
the structure (&), the angle between pairs of elements
(face angle o), the angle between the elements and a radius
from the origin to an endpoint of the element (axial angle @),
and the angle between adjacent faces of the structure

(dihedral angle B), are calculated. Figure 1.80
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Figure 1.80

To find the angle between elements the face X a, we use
the coordinates of their endpoints. The vertex of the angle s
a common endpoint to each element and is translated to the

origin. The other two endpoints, P, and P, are translated

1
in the same manner. Letting (x,, y,, z;) and (x2, Y, 22)
be the points resulting from the translations of the end-

points P1 and P2,

cos o = X1X, * ¥y, t 2,2,
d,d,
where d1 = \/x12 + y,2 + 2,2 1
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and d, = VX%t Y2+ ozp?

o is the desired angle.

To find axial angles, the above method is used except
that the vertex is established at one end of an element and
the origin is used with the other endpoint to define the
angle. The desired angle is Q.

The angle between two adjacent faces, the dihedralx B8,
is found using
_|A1A2 + BB, + C1Cz|

172
cos B =

1.58

Va2 B2+ €2 VA 2+ B2+ C,2
where

g is the desired angle.

i

A, X + B,Y + C,Z + Dy 0 defines the plane containing
one face and

A X + B,Y + C,Z + D,

0 defines the plane containing
the other face.
The negative sign is used because the obtuse angle is desired.

The A, B, and C for each plane are computed as

Y Z, 1

A = Y, Z, 1
Y, Z, 1
X, Z, 1

B - X, Z, 1 1.59
X Z, 1
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1 1

C = X Y 1
2 2

X Y 1
3 3

where (X , Y , Z ), (X , VY , Z ), and (X , Y , Z ) 1ie in
1 1 1 2 2 2 3 3 3
the plane. In particular, the three vertices of each face

are used.
The length of the elements 2 are found by using the

general equation:

g = v//(PXI - sz)z RN E N O E

2 Y2 3 Z3 1.

%2 is the desired length

At the time of publication, the computer programs for
these methods had not been completed and therefore, have not

been included in this report.

NASA-Langley, 1971 — 32 CR=1734 I-203






